Minmax Centered k-Partitioning of Trees and Applications to Sink Evacuation with Dynamic Confluent Flows
نویسندگان
چکیده
Let T = (V,E) be a tree with associated costs on its subtrees. A minmax k-partition of T is a partition into k subtrees, minimizing the maximum cost of a subtree over all possible partitions. In the centered version of the problem, the cost of a subtree cost is defined as the minimum cost of “servicing” that subtree using a center located within it. The problem motivating this work was the sink-evacuation problem on trees, i.e., finding a collection of k-sinks that minimize the time required by a confluent dynamic network flow to evacuate all supplies to sinks. This paper provides the first polynomial-time algorithm for solving this problem, running in O ( max(k, log n)kn log n ) time. The technique developed can be used to solve any Minmax Centered k-Partitioning problem on trees in which the servicing costs satisfy some very general conditions. Solutions can be found for both the discrete case, in which centers must be on vertices, and the continuous case, in which centers may also be placed on edges. The technique developed also improves previous results for finding a minmax cost k-partition of a tree given the location of the sinks in advance.
منابع مشابه
Minmax Tree Facility Location and Sink Evacuation with Dynamic Confluent Flows
Let G = (V,E) be a graph modelling a building or road network in which edges have-both travel times (lengths) and capacities associated with them. An edge’s capacity is the number of people that can enter that edge in a unit of time. In emergencies, people evacuate towards the exits. If too many people try to evacuate through the same edge, congestion builds up and slows down the evacuation. Gr...
متن کاملSink Evacuation on Trees with Dynamic Confluent Flows
Let G = (V,E) be a graph modelling a building or road network in which edges have-both travel times (lengths) and capacities associated with them. An edge’s capacity is the number of people that can enter that edge in a unit of time. In emergencies, people evacuate towards the exits. If too many people try to evacuate through the same edge, congestion builds up and slows down the evacuation. Gr...
متن کاملNon-approximability and Polylogarithmic Approximations of the Single-Sink Unsplittable and Confluent Dynamic Flow Problems
1 CSE Department. Hong Kong UST, [email protected] 2 CE Department. Sharif University of Technology, [email protected] 1 CSE Department. Hong Kong UST, [email protected] Abstract Dynamic Flows were introduced by Ford and Fulkerson in 1958 to model flows over time. They differ from standard network flows by defining edge capacities to be the total amount of flow that can enter an edge in one...
متن کاملOptimal Evacuation Flows on Dynamic Paths with General Edge Capacities
A Dynamic Graph Network is a graph in which each edge has an associated travel time and a capacity (width) that limits the number of items that can travel in parallel along that edge. Each vertex in this dynamic graph network begins with the number of items that must be evacuated into designated sink vertices. A k-sink evacuation protocol finds the location of k sinks and associated evacuation ...
متن کاملA Polynomial Time Algorithm for Minimax-Regret Evacuation on a Dynamic Path
A dynamic path network is an undirected path with evacuees situated at each vertex. To evacuate the path, evacuees travel towards a designated sink (doorway) to exit. Each edge has a capacity, the number of evacuees that can enter the edge in unit time. Congestion occurs if an evacuee has to wait at a vertex for other evacuees to leave first. The basic problem is to place k sinks on the line, w...
متن کامل